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Abstract: Theoretical and experimental investigations on settling velocities of bead agglomerates 
in viscous regime were accomplished. Agglomerates were constructed from 6-17 spherical beads 
in form of flocs in various configurations. Theoretical analysis was preformed using computer code 
WinHYDRO++. Settling velocities were correlated with fractal dimensions and gyration radii 
of the agglomerates. Winterwerp’s formula, based on Stokes equation, for settling velocity 
of cohesive agglomerates was verified. Laboratory measurements of settling velocities were done 
in sedimentation column of height 95.0 cm and diameter 9.0 cm filled with glycerin. Settling 
velocities calculated using WinHYDRO++ have overestimated, on average by 24%, the measured 
values and those calculated by the Winterwerp’s formula have underestimated the measured ones 
by 22%. Radius of gyration has occurred a more adequate parameter to describe the settling 
velocity than fractal dimension. 
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NOTATION 
 da – aggregate diameter, m 
dp – diameter of elementary bead 
(primary particle), m  
Dnf – fractal dimension, - 
g – acceleration due to gravity, m/s2 

kψ – sphericity, - 
m – mass of the whole agglomerate, g 
 

N – number of primary beads in an agglomerate, - 
ri – distance of the i-th primary particle from the 

axis of gyration, m 
V1 – settling velocity of a single particle, m/s 
μl  –  dynamic viscosity of liquid, Pa·s 
ν – kinematic viscosity, m2/s 
ρs(l) – density of floc material (liquid), kg/m3 

 

 
1. INTRODUCTION  

Settling velocity of agglomerates is a basic parameter in description 
of sedimentation in both natural and artificial conditions. Gravitational settling is widely 
acknowledged as a key mechanism behind removal of suspended particles from the water 
column in aquatic environments such as stormwater and fish ponds, lakes, river deltas, 
estuaries and marine environments as well as water and wastewater treatment 
installations (Winterwerp 1998, Khelifa 2006). Small sediment particles aggregate 
to form large flocs which sink much faster in water than the primary particles.  

Attempts to model settling velocity as a function of floc size, shape and density 
have been undertaken for more than hundred years (Smoluchowski 1911). These early 
attempts to predict the settling velocity of natural flocs were often erroneous ones and 
demonstrated that the assumption of size-invariant density was incorrect, which forced 
researchers to modify their formulae using empirical factors.  
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Due to irregular shapes of some agglomerates it is hard to calculate their settling 
velocities (also during centrifugation), which are commonly employed as a source 
of information about the overall structure  and dynamic behavior of biological 
and synthetic macromolecules in solution (Banachowicz 2013). Biological 
macromolecules, cohesive agglomerates and other similar flocs,  usually exhibit complex 
shapes that can not be  represented by simple geometries, like ellipsoids or cylinders, 
for which hydrodynamic properties can be calculated from analytical formulae.  

One of relatively new methods, developed under conditions of viscous settling 
of rigid macromolecules or particles of arbitrary shapes, is so called bead modelling. 
A particle (agglomerate) is represented here as an assembly of primary spherical 
elements (Bloomfield et al. 1967, Garcia de la Torre et al. 1978). In this work a system 
of modified hydrodynamic interaction equations was used to calculate settling velocity 
of several chosen particles made of equal primary beads. 

Winterwerp’s formula, based on Stokes equation, for settling velocity 
of cohesive agglomerates, in the following form (Winterwerp 1998): 
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laWld dV  , was also verified. Winterwerp did not determine exactly 

the range of validity of his formula, however from data in his paper (Winterwerp 1998) 
it can be deduced that it holds for 1.4 < Dnf  < 2.3. 
Both calculation methods were verified on the basis of our own experiments and some 
data from the literature. 
 

2. MATERIALS  AND  METHODS 
Physical models of agglomerates were made of plastic glued beads and beads 

connected with thin steel rods. Different particle models were created from 6 and 13 
primary beads (Fig. 1); their characteristics are shown in Tab. 1.  
 

 
Fig. 1. Views of physical bead models: a) 6-bead model (linear),  

b) 6-bead model (spatial), c) 13-bead model, 
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Table 1 
 Characteristics of physical  model particles 

 

Model 
particle 

Mass Volume 

Mean  
density 

ρs 

Diameter of particle 

primary 
 dp 

model 
 da 

g cm3 g/cm3 cm cm 

6-bead (I) 0.7678 0.6738 1.140 0.595 3.60 
1-bead (I) 0.1285 0.1123 1.144 0.595 - 

6-bead (II) 0.7630 0.6761 1.129 0.595 3.70 

1-bead (II) 0.1281 0.1139 1.125 0.595 - 

6-bead (linear) 0.6816 0.6614 1.031 0.595 3.57 

13-bead 1.4768 1.4330 1.031 0.595 2.97 

 
Measurements of translational velocity of the above described particles under 

gravity were made in a cylinder of diameter 9.0 cm and height 95.0 cm filled 
with glycerin of density 1.262 g/cm3 at temperature 20°C. Due to the higher density of 
the liquid than density of the particles, a model particle was placed at the bottom of the 
cylinder using a special looped wire. Therefore, instead of settling, a flotation  time was 
measured over vertical distance equal to 45 cm. Every measurement was repeated several 
times. 

Fractal dimension was estimated using the following relationship (Błażejewski 2015): 
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Calculations of translational velocity of the model bead particles (agglomerates) were 
made using a public-domain computer code WinHYDRO++ developed by Garcia de la 
Torre et al. (1997, 2010) on the base of a theory elaborated by Bloomfield at al. (1967). 
Model particles were created in the code and their settling velocities were calculated 
under conditions of viscous regime. The mass of agglomerates was expressed in daltons. 
Dynamic viscosity of glycerin at temperature 20oC was taken as 14.10 P, i.e. 1.4 Pas. 
Other data and results of calculations are shown in Table 2. Sedimentation coefficient, 
expressed in svedbergs, was recalculated to the translational velocity under gravitational 
acceleration.  

To compare results obtained with the use of WinHYDRO++, further calculations by 
the Winterwerp’s formula (1998) were accomplished. Due to implicit form 
of the formula, an iterative procedure was applied. Sphericity coefficient  kψ = 1 was 
utilized, as all the particles were built from spherical primary particles.  The Reynolds 
number, based on the measured floating velocity Ve, was expressed as: 


 aelae dVdV 


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Re    (3) 
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3. RESULTS AND DISCUSSION 
Particle characteristics, and translational velocities obtained from physical 

experiments, as well as calculated by WinHYDRO++ and Winterwerp’s formula are 
presented in Table 2. 

  
Table 2 

Particle characteristics and their translational velocities under gravity 
 

Model 
particle 

Mass 
Fractal 

dimension 
Dnf 

Measured 
mean 

velocity 
Ve 

Velocity by 
WinHYDRO

++ 
VWH 

Velocity by 
Winterwerp 

VW 

Re 

g Da - mm/s mm/s mm/s - 

6-bead(I) 0.7678 4.625E+23 1.00 2.06±0.02 2.62 1.65 5.008E-02 

1-bead (I) 0.1285 7.741E+22 - 1.66±0.02 1.31  - 1.049E-02 

6-bead (II) 0.7630 4.60E+23 0.98 1.72±0.02 2.76 1.63 5.068E-02 

1-bead (II) 0.1281 7.71E+22 - 1.33±0.04 - - 8.406E-03 

6-bead linear 0.6816 4.11E+23 1.00 6.30±0.31 6.36 3.08 9.270E-02 

1-bead* 0.1136 0.69E+23 - - 2.67 - 5.029E-02 

13-bead 1.4768 8.89E+23 1.59 8.30±0.06 9.09 7.41 1.857E-01 

9-bead 1.0224 6.157E+23 1.37 - 8.55 5.17 1.296E-01 

15-bead 1.7040 1.026E+24 1.39 - 10.27 6.36 2.229E-01 

17-bead 1.9312 1.163E+24 1.46 - 10.30 6.85 2.402E-01 

* this is the primary bead creating a linear 6-bead particle. 
 
Data in Table 2 show that the translation of particles in glycerin can be treated 

as a viscous one (Re < 1). Computer code WinHYDRO++ gave generally higher values 
of the translational velocity than the measured ones, most probably due to neglecting 
wall effects in this theoretical method. The ratio of translational velocity of a linear        
6-bead particle to the velocity of a single bead was equal in our study to 2.4. This value is 
close to the one presented by Zahn et al. (1994), which was about 2.2. 

Relationships between translational velocities of the investigated particles and their 
fractal dimensions are given in Fig. 2. They can be approximated by linear correlations. 
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Fig. 2. Relationships between translational velocity of particles and their fractal dimensions 
 

From Fig. 2 one may conclude that the higher the fractal dimension, the higher 
translational velocity. Values generated by the WinHYDRO++, as a function of fractal 
dimension, are higher than those calculated using Winterwerp’s formula. In Fig. 3 
deviations of the calculated velocities from the measured ones are depicted. It can be 
seen that their agreement is pretty good, excluding the result for a linear 6-bead particle, 
calculated using the Winterwerp’s formula. The Winterwerp model seems to be equally 
good as the WinHYDRO++ model, except for the measured settling velocity equal 
to 6 mm/s for the linear 6-bead particle. The values calculated using the Winterwerp’s 
formula gave underestimated results (on average by –22%) and those calculated using the 
WinHYDRO++ model overestimated the measured ones (on average by +24%). 
 

 
Fig. 3. Parity graph comparing calculated results with the experimental ones 
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 In order to determine the impact of the configuration of the model bead particles 
(agglomerates) on translational velocity the WinHYDRO ++ was used. In Fig. 4-6, 
relationships between settling velocity, radius of gyration and fractal dimension are 
presented. Radius of gyration is defined here as: 

m

rm
R

N

i ii

g

  1

2

     (4) 

where mi  - mass of i-th primary particle, distant by ri from the axis of gyration, m – total 
mass of all N particles in a given agglomerate. 
 

In Fig. 4 one can observe linear correlations between variables as well as 
statistically significant coefficients of determination. 
 

   
 

 
 

Fig. 4. Ratios of settling velocities VWH 6-el (for aglomerate 6-bead particle) to  the settling velocity 
V1 (for 1-bead particle) calculated using WinHYDRO++ versus radii of gyration Rg and 

fractal dimensions Dnf  
 

In Fig. 5 and 6, depicting the same relationships for more complex agglomerates, 
the linear correlation holds for the right hand side pictures only, showing the impact 
of fractal dimensions. The dependence of the settling velocity on agglomerate radius 
of gyration is better described by non-linear (quadratic) correlations. 
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Fig. 5. Ratios of settling velocities VWH 13-el (for aglomerate 13-bead particle) to  the settling 

velocity V1 (for 1-bead particle) calculated using WinHYDRO++ versus radii 
of gyration Rg and fractal dimensions Dnf 

 

 
 

Fig. 6. Ratios of settling velocities VWH 17-el (for aglomerate 17-bead particle) to  the settling 
velocity V1 (for 1-bead particle) calculated using WinHYDRO++ versus radii 

of gyration Rg and fractal dimensions Dnf  
 

4. CONCLUSIONS 
The Winterwerp’s formula for settling velocity of cohesive flocs is generally 

consistent with our experimental data but it cannot be applied for agglomerates 
with fractal dimensions less than 1.4, i.e. quasi-linear agglomerates. 

Computer code WinHYDRO++ can be applied for calculation of settling 
(floating) velocities at low Reynolds numbers, but it neglects an agglomerate position 
(relative to the direction of translation) at calculations of translational velocities. 

Agglomerates constructed from primary bead particles settle or float, at low 
Reynolds numbers, depending on their arrangement and fractal dimensions as well as the 
other parameters taken into account in the Stokes formula. Radius of gyration seems 
to be a better parameter to describe the settling velocities than the fractal dimension. 
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